16p^2-2=23

Simple and best practice solution for 16p^2-2=23 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16p^2-2=23 equation:



16p^2-2=23
We move all terms to the left:
16p^2-2-(23)=0
We add all the numbers together, and all the variables
16p^2-25=0
a = 16; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·16·(-25)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1600}=40$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40}{2*16}=\frac{-40}{32} =-1+1/4 $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40}{2*16}=\frac{40}{32} =1+1/4 $

See similar equations:

| 6b-12+5-8b+4=2(2-b)-7 | | 16x+136=328 | | k=12(-k+12) | | 197219=1.55x+110419 | | -186=-6(1-5x) | | -20+2y-8=3(y-11) | | 15=1/2+3/2x+20 | | -8+3=5b | | 2+9b=-47 | | -30+2y-8=3(y-11) | | 25n^2+2=51 | | Y=1.55x+110419 | | 3+2y-8=3(y-11) | | 3(2e+5)*8(1-e)=1 | | 2x+3=20x-3 | | 4(2x+1)=8x+3 | | 310+165=x | | 11(4-6x)+(13x+1)=9 | | -12x–3(3x+7)=6(x+30) | | 6x+3x-4-7=-29 | | 15-2(3x-1)=46 | | 100+2y-8=3(y-11) | | 2×(3x+5)=4x–11 | | 321321x+32413131-324=x | | 4/5(10n-15)=3n+13 | | 10+2y-8=3(y-11) | | 3m+m=m-35 | | 20+(y+10)+4y=y | | -132=-3v+6(4v+6) | | x+60+2x+10-x=180 | | -11n+9=-2n+45 | | 6m-8=10m+4 |

Equations solver categories